10. Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and visualize the clustering result.
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
data = load_breast_cancer()
X = data.data # Features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
clusters = kmeans.fit_predict(X_scaled)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
centroids_original = kmeans.cluster_centers_
centroids_pca = pca.transform(centroids_original) # Convert centroids to 2D
plt.figure(figsize=(8, 6))
for cluster, color in zip(range(2), ["red", "blue"]):
plt.scatter(X_pca[clusters == cluster, 0], X_pca[clusters == cluster, 1],
color=color, alpha=0.6, edgecolor="k", label=f"Cluster {cluster}")
plt.scatter(centroids_pca[:, 0], centroids_pca[:, 1],
s=250, c='black', marker='X', label="Centroids")
plt.legend(loc="upper right")
plt.title("K-Means Clustering on Wisconsin Breast Cancer Dataset")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()